Mclean, E. (1970). Pharm. Rev. 22, 429-483.
Pearson, R. (1971). Abstract I4 of the ACA Summer Meeting, Ames, Iowa.
Pearson, R. (1973). Ph.D. thesis, Department of Biophysics, Univ. of Maryland, Baltimore, Maryland 21201.
Schoental, R. (1957). Nature, Lond. 179, 361-363.
Schoental, R. (1963). Aust. J. Chem. 16, 233-238.
Schoental, R. (1968). Cancer Res. 28, 2237-2246.

Schoental, R. (1970). Nature, Lond. 227, 401-402.
Street, P. N. (1971). Amer. Lab. 3, 45-53.
Sussman, J. L. (1972). The Crystal Structure of a Very Small Portion of RNA and Advances in Techniques of Biological Crystallography. Ph.D. thesis, Department of Biology, MIT, Cambridge, Mass. 02139.
Wodak, S. (1972). Abstract C9 of the ACA Winter Meeting, Albuquerque, New Mexico.

Acta Cryst. (1973). B29, 2926

The Crystal Structure of Stoichiometric CoIn 3

By H. H. Stadelmaier, J. D. Schöbel, R. A. Jones* and C. A. Shumaker \dagger
Engineering Research Services Division and Department of Materials Engineering, North Carolina State University, Raleigh, N.C. 27607, U.S.A.

(Received 14 June 1973; accepted 6 August 1973)

Abstract

The compound CoIn_{3} prepared at $400^{\circ} \mathrm{C}$ is stoichiometric. Its crystal structure has been determined by single-crystal X-ray analysis. CoIn_{3} crystallizes in the tetragonal system, space group $P 4 / \mathrm{mbm}$. The unit cell, which contains eight atoms, has the dimensions $a=6.830$ and $c=3.547 \AA$. The structure was refined by the least-squares method, using the positional parameters and isotropic temperature parameters. The structure is based on layers of square-triangular nets and is related to CoGa_{3} and $\mathrm{Si}_{2} \mathrm{U}_{3}$ in that it is a disordered variant of the former and a defect structure of the latter. Whereas the geometry of the known compounds with the $\mathrm{Si}_{2} \mathrm{U}_{3}$ structure is closely tied to the conditions of spherical packing, CoGa_{3} and CoIn_{3} are characterized by a short bond distance $\mathrm{Co}-\mathrm{Ga}$ and Co -In.

Introduction

Until quite recently, the information on phases in the cobalt-indium binary system was sparse. Some clarification of the phase equilibria and the composition of the intermetallic compounds was provided by Schöbel \& Stadelmaier (1970). In looking over the preliminary structural information that we had on CoIn_{3}, we detected a relationship to tetragonal CoGa_{3} (Schubert, Lukas, Meissner \& Bhan, 1959) suggesting that our unit cell was essentially that of tetragonal CoGa_{3} with half the cell constant c. Since a unit cell to be obtained by merely cutting the cell of the CoGa_{3} type in half in this manner did not appear compatible with the tetragonal lattice actually observed, we believed that a full structure determination would shed some light on this problem.

Sample preparation and chemical composition

CoIn_{3} was formed by reacting solid cobalt ($99.74 \mathrm{wt} . \%$ purity) with liquid indium ($99.99 \mathrm{wt} . \%$ purity) for 200 h at $400^{\circ} \mathrm{C}$ and quenching to room temperature. The reaction layer consisted of a single phase sand-

[^0]wiched between the cobalt and the solidified indium. Although the grains in the reaction layer were mostly columnar, equiaxed crystals suitable for X-ray work could be isolated by digesting the reaction layer in dilute HCl .

The chemical composition was determined by elec-tron-probe analysis, using a Hitachi XMA-5 microprobe. The compound layer was analyzed against standards of elemental cobalt and indium. Corrections for atomic number, absorption, and fluorescence effects were made using a computer program developed by Colby (1968). The composition, averaged from six independent and separately corrected determinations, was $24 \cdot 9 \pm 1 \cdot 2 \mathrm{at} . \% \mathrm{Co}$ and $75 \cdot 1 \pm 1 \cdot 2 \mathrm{at} . \% \mathrm{In}$. A microprobe line scan through the compound layer showed that its composition was uniform. Therefore the microprobe evidence supports the assumption of stoichiometric Coln ${ }_{3}$.

Experimental

Approximate cell constants were obtained from 001 and 110 rotation patterns (camera diameter 10 cm , filtered Co $K \alpha$ radiation). The final cell constants were measured with a Straumanis-type powder camera (diameter 114.59 mm) extrapolating to $\theta=90^{\circ}$ and using Co $K \alpha_{1}, \lambda=1.78892 \AA$ and Co $K \alpha_{2}, \lambda=1.79278 \AA$. The single-crystal integrated intensities of 194 reflections were collected with a manually operated Picker four-circle diffractometer using crystal-monochrom-

Table 1. Final parameters of CoIn_{3} (with e.s.d.'s)

	Number	Position	$10^{4} \mathrm{X} / \mathrm{a}$	$10^{4} \mathrm{Y} / \mathrm{a}$	$10^{4} \mathrm{Z} / \mathrm{c}$	$B\left(\AA^{2}\right)$
In(1)	4	4 (h)	3458 (4)	8458 (4)	5000 (0)	$1 \cdot 19$ (3)
In(2)	2	2 (a)	0 (0)	0 (0)	0 (0)	$1 \cdot 21$ (4)
Co	2 (random)	4 (g)	1499 (12)	6499 (12)	0 (0)	$0 \cdot 46$ (7)
Population factor for position 4 (g.) : 0.500 (11)						

atized Mo $K \alpha$ radiation and employing the movingcrystal moving-counter method (2θ scan) with $0<$ $2 \theta \leq 65^{\circ}$. The $h k l$ contained in one half-octant in reciprocal space were included. Because the Bragg angle of the quartz monochromator crystal is small for Mo radiation, only the standard polarization correction was used. In addition to the Lorentz correction, the spherical absorption correction taken from International Tables for X-ray Crystallography (1967) was applied. This was justified by the approximately spherical shape of the crystal; the value of μR was 6.0 with transmission factors A ranging from 0.010 to 0.068 . The tetragonal cell data are $a=6 \cdot 830 \pm 0.001$, $c=3.547 \pm 0.002 \AA, \quad c / a=0.5193, \quad V=165 \cdot 5 \AA^{\frac{-}{3}}, \quad D_{x}=$ $8.09 \mathrm{~g} \mathrm{~cm}^{-3}$.

Structure determination

The indices of the observed reflections obeyed the condition $0 k l: k=2 n$. Observed very weak reflections 053

Table 2. Observed and calculated structure factors $(\times 10)$ for CoIn_{3}

and 072 were readily identified as double reflections, the former by intensity reversal of apparent α_{1} and α_{2} the latter by the absence of $\alpha_{1,2}$ splitting at $2 \theta=49 \cdot 3^{\circ}$. Neither of these are possible in a properly aligned diffractometer with the monochromator set to pass Mo $K \alpha_{1}$ and α_{2}, nor was anything comparable observed in other reflections. The centrosymmetric space group that satisfies the systematic extinctions is $P 4 / \mathrm{mbm}$ (No. 127). 194 observed reflections were used to fix eight parameters (two positional, three isotropic temperature, one population factor, one scale factor and an extinction parameter) in the final refinement, or 24 data per parameter. The basic structure was readily deduced from the cell dimensions and the strong reflections. Minor modifications in the occupancy of the atomic sites were tested before proceeding with the last refinement leading to the parameters reported here. The structure calculations were carried out with the CRYM Crystallographic Computing System (Duchamp, 1964). The structure was refined by a full-matrix least-squares method in which the function minimized was $\sum w^{2}\left(\left|F_{o}\right|^{2}-\left|1 / k F_{c}\right|^{2}\right)^{2}$. A Hughes $1 / F_{o}^{2}$ weighting scheme was used to provide the weights. A population factor was included in the refinement to verify the fractions of the fourfold cobalt position occupied by cobalt and vacancies. Visual inspection of the list of F_{o} and F_{c} after refinement of the positional and isotropic thermal parameters suggested the need for a secondary extinction correction, so this was included in the final refinement cycles. The program uses the expression of Larson (1967) for the extinction-corrected F_{c}^{2}, which is equal to $F_{c}^{2} /\left(1+\beta g F_{c}^{2}\right)$, and assumes negligible absorption.

Results

The absence of superstructure reflections in the 001 rotation pattern and the powder pattern preclude a cell constant c that is a multiple of the proposed $3.547 \AA$. The structure was refined to a final unweighted reliability index $\left(R=\sum|k| F_{o}\left|-\left|F_{c}\right|\right| / \sum k\left|F_{o}\right|\right.$ where k is the scale factor) of 0.062 . The refined structural parameters and their e.s.d.'s (in parentheses) are listed in Table 1. Table 2 lists the observed and calculated structure factors. A projection of the structure down the c axis is shown in Fig. 1. The halfshaded cobalt atoms indicate that the fourfold cobalt position is occupied by two atoms at random. Fig. 1 is drawn using radii of $1.57 \AA$ for indium and $1.25 \AA$ for cobalt. Where the atomic distances are shorter than the sum of these radii, the bond appears compressed.

The interatomic distances calculated from the atomic parameters and the cell constants are found in Table 3, together with their e.s.d.'s.

Table 3. Interatomic distances for CoIn_{3} (with e.s.d.'s)

Reference atom	Neighbor	Number of neighbors*	Distance
$\mathrm{In}(1)$	Co	1*	$2 \cdot 593$ (7)
	Co	2*	$2 \cdot 732$ (7)
	In(1)	1	$2 \cdot 980$ (1)
	In(2)	4	$3 \cdot 136$ (3)
	$\operatorname{In}(1)$	2	3.547 (2)
	In(1)	4	3.657 (1)
$\operatorname{In}(2)$	Co	2*	2.601 (3)
	In(1)	8	3.316 (3)
	$\operatorname{In}(2)$	2	$3 \cdot 547$ (2)
Co	In(1)	4	2.593 (7)
	In(2)	2	2.601 (3)
	In(1)	2	2.732 (7)
	Co	$\frac{1}{2}$ *	2.896 (2)
	Co	1*	3.547 (2)
	Co	2*	3.679 (2)

* For fully occupied Co site multiply by 2.

Discussion

The $\operatorname{In}(1)$ atoms in the CoIn_{3} structure are arranged in stacks of square-triangular nets. In the most familiar structure based on square-triangular nets, the CuAl_{2} type, the squares stack up to cubic antiprisms. In CoIn_{3} they form cubes of $\operatorname{In}(1)$ atoms that are slightly compressed along the c axis of the unit cell $(3.547 \AA$ vs. $3.657 \AA$, see Table 3). The center of the cube is occupied by $\operatorname{In}(2)$ whose distance to its eight neighbors $(3 \cdot 136 \AA)$ is about twice the conventional radius for metallic indium. Typical indium radii are: (a) from Pauling's (1960) single-bond radius adjusted for C.N. $8,1 \cdot 53 \AA,(b)$ from the smallest atomic distance (C.N. 4) in elemental indium (International Tables for X-ray Crystallography, 1968) $1.63 \AA$, (c) from the atomic radii of Slater (1972) $1 \cdot 55 \AA$. The formal description of CoIn_{3}, that ties it to related structures, can be given along the following lines: $\operatorname{In}(1)$ and $\operatorname{In}(2)$ form a skeleton that is also found in CoGa_{3} (Schubert et al., 1959), where it is occupied by gallium atoms, and in $\mathrm{Si}_{2} \mathrm{U}_{3}$ (Zachariasen, 1949) where it is occupied by uranium atoms. Then CoIn_{3} has a defect $\mathrm{Si}_{2} \mathrm{U}_{3}$ structure with only half of the Si positions occupied. One could also say that the fourfold Co site in hypothetical $\mathrm{Co}_{2} \mathrm{In}_{3}$ is randomly occupied by two atoms. An alternative description is obtained by relating CoIn_{3} to CoGa_{3}, which itself is a defect superstructure of the $\mathrm{Si}_{3} \mathrm{U}_{2}$ type produced by putting ordered vacancies into hypothetical $\mathrm{Co}_{2} \mathrm{Ga}_{3}$. This leads to a doubling of the c parameter. Then CoIn_{3} is simply a degenerate variety of this $\mathrm{Co} \square \mathrm{Ga}_{3}$ structure type, obtained by disordering the cobalt atoms and the vacancies. This restores the original c parameter. The occupation of the small atom (Si or Co) sites in the three structures is illustrated in Fig. 2. Note that the cell of Zachariasen
(1949) was shifted by $\frac{11}{22} 0$ and that of Schubert et al. (1959) was shifted by $c^{\prime}=-\frac{1}{4}$ to make them both conform to our setting. The question of how the CoIn_{3} cell can be half of the CoGa_{3} cell is thus resolved in a simple way.
In a metallic structure geometrical arguments are often instructive, and an example of these applied to the CuAl_{2} type is found in the work of Laves (1956). The $\mathrm{Si}_{2} \mathrm{U}_{3}$ structure can be derived from a bodycentered cubic uranium structure by removing every other center atom and collapsing the empty cube into two adjoining trigonal prisms, each of which is filled with a silicon atom. For hard-sphere contact the following theoretical parameters are computed: space

Fig. 1. Projection of Coln ${ }_{3}$ structure on to the $x y$ plane. Some atoms are removed in the plane at $z=\frac{1}{2}$. Half-shaded circles indicate atoms with population factor $\frac{1}{2}$.

Fig. 2. Occupation of small-atom site in CoIn_{3} and related structures. Squares indicate vacancies.
filling 0.64 (vs. 0.68 for b.c.c.), radius ratio $\mathrm{U}:$ Si 1.321 , tetragonal c / a ratio 0.495 , fractional positional paramete1s $\mathrm{U}, x=0 \cdot 3117$; Si, $x=0 \cdot 1111$. In Zachariasen's (1949) setting the theoretical parameters are $\mathrm{U}, x=$ $0 \cdot 1883$; Si, $x=0 \cdot 3889$. The $\mathrm{Si}_{2} \mathrm{U}_{3}$ types for which the atomic positions are known, i.e., $\mathrm{Si}_{2} \mathrm{U}_{3}, \mathrm{Si}_{2} \mathrm{Th}_{3}, \mathrm{Al}_{2} \mathrm{Th}_{3}$, $\mathrm{Ga}_{2} \mathrm{Ta}_{3}, \mathrm{Ga}_{2} \mathrm{Zr}_{3}, \mathrm{Ge}_{2} \mathrm{Th}_{3}$ (see Pearson, 1967), have x values that are quite close to the theoretical ones for spherical packing, but the defect types CoGa_{3} and CoIn_{3} are distorted noticeably. In them the effect of having $x>0.3117$ is to rotate clockwise the cube of In(1) located in the center of the cell, Fig. 1. This shortens the $\operatorname{In}(1)-\operatorname{In}(1)$ nearest-neighbor distance to $2.980 \AA$. It also decreases the cell constant a, and that is why the $\operatorname{In}(1)$ cube can appear compressed down the c axis while c / a still exceeds the theoretical 0.495 . For cobalt, $x>0.1111$, and consequently the cobalt nearest neighbors that touch in the rigid-sphere model, are separated to $2.896 \AA$ (Table 2). Note that twice the C.N. 12 radius of cobalt is only $2.50 \AA$. Contrast this with the short $\mathrm{Si}-\mathrm{Si}$ distance in $\mathrm{Si}_{2} \mathrm{U}_{3}$ which is observed to be $2 \cdot 30 \AA$, a figure much smaller than the sum of the C.N. 12 radii ($2 \cdot 64 \AA$). The separation of the cobalt neighbors is accompanied by a contraction of the distance $\operatorname{Co}-\operatorname{In}(1)$ to 2.593 or $2.601 \AA$. The sum of the C.N. 12 radii is $2.91 \AA$, the sum of the Slater (1972) radii is $2.90 \AA$. Better agreement is found with the sum of the Pauling (1960) radii assuming C.N. 6 for the cobalt atom to fix the bond number. The distance so derived is predicted to be $2 \cdot 58 \AA$. The distortion
against the rigid-sphere model is, then, attributable to a tendency of cobalt and indium to form a bond of that length.

The authors express their appreciation to Professor Jon Bordner of the Chemistry Department, North Carolina State University for sharing his crystallographic computer programs.

References

Colby, J. W. (1968). Advanc. X-ray Anal. 11, 287-305.
Duchamp, D. J. (1964). American Crystallographic Assoc. Meeting, paper B14, p. 29. Bozeman, Montana.
International Tables for X-ray Crystallography (1967). Vol. II. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Laves, F. (1956). Theory of Alloy Phases, pp. 124-198. Cleveland: American Society for Metals.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Vol. 2. Oxford: Pergamon Press.
Schöbel, J. D. \& Stadelmaier, H. H. (1970). Z. Metallkunde, 61, 342-343.
Schubert, K., Lukas, H. L., Meissner, H. G. \& Bhan, S. (1959). Z. Metallkunde, 50, 534-540.

SLater, J. C. (1972). Symmetry and Energy Bands in Crystals. New York: Dover Press.
Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.

Acta Cryst. (1973). B29, 2929

O.r.d. Studies of $\boldsymbol{\beta}$-Amino Ketones. I. The Crystal Structure and Absolute Configuration of (+)-(1-Methyl-3-benzoyl-3-bromoacetoxypiperidine Hydrobromide)

By G. Hite* and B. M. Craven
Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

(Received 22 March 1973; accepted 9 August 1973)
(+)-(1-Methyl-3-benzoyl-3-bromoacetoxypiperidine hydrobromide), $\left[\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Br}\right)^{+} \mathrm{Br}^{-}\right]$(IV) crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. The lattice translations are $a=7 \cdot 200$ (3), $b=11 \cdot 312$ (4), $c=20.776$ (7) \AA. There are four molecules per unit cell; $D_{x}=1.65$ and $D_{m}\left(\mathrm{HCCl}_{3}-\mathrm{HCBr}_{3}\right)=1.64 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was determined by the heavy-atom method. Refinement of positional and thermal parameters by the block-diagonal, least-squares procedure converged at $R=0.050$. The $R-(+)$-configuration was established from the anomalous scattering of the bromine atoms. The $C(4)-C(3)-O(1)-C(7)-C(8)$ fragment is trans-trans. The benzoyl group is equatorial and the $O(3)-C(9)-C(3)-C(2)$ torsion angle is $21 \cdot 3^{\circ}$. Evidence is cited to support the predominance of the $21 \cdot 3^{\circ}$ rotamer in aqueous acid solutions of analogs configurationally related to IV by unequivocal chemical methods. Based on this conformation and configuration, optical rotatory dispersion data for analogs of IV in aqueous acid are consistent with antioctant behavior.

Introduction

Negative Cotton effects (Djerassi, 1960) have been reported for (+)-I and (-)-II in $0 \cdot 1 \mathrm{~N}$ hydrochloric acid

[^1](Smissman \& Hite, 1960), (Fig. 1). These compounds have the same configuration (Zalucky, Malspeis \& Hite, 1964; Zalucky, Marathe, Malspeis \& Hite, 1965; Patel \& Hite, 1965a, b; Patel \& Hite, 1967). Acetylation of $(+)$-I afforded $(+)$-III (Zalucky, Malspeis \& Hite, 1964): m.p. $66-67^{\circ} ;[\alpha]_{D}^{25}$ (ethanol) $+34 \cdot 7^{\circ}(c 10 \cdot 56)$; $[\alpha]_{D}^{25}(0.5 N \mathrm{HCl})+72 \cdot 3^{\circ}(c \quad 11 \cdot 14)$. R.D. (Fig. 1) in

[^0]: * Present address: Western Electric Company, Greensboro, North Carolina 27407, U.S.A.
 \dagger Present address: Exxon Research and Engineering, Florham Park, New Jersey 07932, U.S.A.

[^1]: * Present address: School of Pharmacy, University of Connecticut, Storrs, Connecticut 06268, U.S.A.

